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ABSTRACT

Peck caused by stink-bug is an important quality factor for rice grading,
marketing, and end-use. The current visual method of separating pecky
rice kernels from sound kernels is time consuming, tedious, and subject to
error. The objective of this research was to develop an objective method
for classifying pecky rice kernels and sound rice kernels using visible and
near-infrared (NIR) spectroscopy. A diode-array NIR spectrometer,
which measured absorbance spectra (log (1=R)) from 400 to 1700 nm, was
used to differentiate pecky rice kernels and sound rice kernels
individually. Partial least squares (PLS) regression models with three
wavelength regions (4007750, 40071700, and 75071700 nm) and two-
wavelength models were developed. Results showed that both PLS
models and two-wavelength models can be used to classify pecky rice
kernels. For PLS models, the NIR wavelength region of 75071,700 nm
gave the highest percentage of correct classification for both calibration
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and validation (100%). For two-wavelength models, the model using
wavelengths 480 and 590 nm yielded the highest classification accuracies
for both calibration and validation sample sets (99.3%). Stink-bug
feeding caused microorganism activity resulting in grain discoloration.
The color change made the classification of pecky rice and sound rice
kernels possible (accuracy> 99%) even when the undamaged area faces
the illumination light.

INTRODUCTION

In rice, peck damage is one of the most important quality factors for
grading, marketing, and determining end-use. The rice stink-bug, Oebalus
pugnax, is a key pest that causes peck damage. It attacks the crop from
heading to harvest.[1] The insect inserts it mouthparts into the kernel and
consumes the contents. This feeding also causes microorganism activity that
results in a discolored area on the grain.[275] Pecky rice is characterized as a
roughly circular lesion, which in some cases appears as a shrunken area. In
general, pecky rice kernels are accompanied by discoloration, usually a
brown to black discoloration of the whole kernel or portion of the kernel, or
a black linear discoloration. Peck damage causes both yield and quality losses
that affect rice end-use.[678]

Pecky grains weigh substantially less than normal grains since they are
not fully developed or are damaged by fungus which results in a yield loss.
Based on an average of 2.7% peck, head rice yield was reduced by 3.8%.[9]

Pecky kernels break more easily than undamaged kernels during milling,
which may result in a low quality grade depending on the proportion of
damaged to undamaged kernels. The U.S. rice grading standard for brown
rice classifies pecky rice as damaged kernels. The maximum limit for
damaged kernels and red rice combined are 1, 2, 4, 8, and 15% for U.S. No.
1, 2, 3, 4, and 5 designation.[10] It was reported by Warren et al.[11] that in the
U.S. market, only whole kernels, red rice, weed seed, and peck were sig-
nificant quality factors, and that the impact of peck damage is much greater
than red rice or weed seed. Peck damage also affects the end-use of rice,
especially for the parboiled rice industry. Pecky rice is a severe problem in
this industry, since the parboiling process tends to intensify color develop-
ment in the damaged grains, and most of these grains must be removed
before use. Parboilers usually have their own requirements on the allowable
level of pecky rice in rice purchased for parboiling. This tolerance is very low
because of the additional expenses for removing pecky rice from the par-
boiled product.[8]

The Grain Inspection, Packers and Stockyard Administration (GIPSA)
and local elevators use specific criteria to visually determine pecky rice from
sound rice. The rice inspector must be trained to recognize various types of
damage that may occur in rice. Also, they must have an ability to judge each
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instance where the damage is sufficient to be considered below the stan-
dard.[10] The inspection often involves hand-picking, separation, and count-
ing. This process is slow and tedious. Therefore, an objective and quick
means of classifying pecky rice kernels from sound rice kernels is needed.

Near-infrared (NIR) spectroscopy has been used to measure physico-
chemical properties of rice, such as moisture content,[12,13] protein con-
tent,[12714] amylose content,[14716] whiteness,[14,15] milling degree,[14716] and
cooking quality.[13717] No research has been published on the use of NIR
technology to classify pecky rice kernels from sound kernels. Typically,
quality factors of rice were measured using bulk or ground samples. How-
ever, quantifying the percentage of damaged rice kernels is not possible using
bulk or ground samples. The objective of this research was to classify single
pecky rice kernels and sound rice kernels using NIR spectroscopy.

MATERIALS AND METHODS

Rice Sample

Brown rice samples were obtained from Jerry Scarver Uncle Ben’s Inc.
(Greenville, MS). Rice samples were separated into four categories based on
proportion and location of peck on the kernels. Categories were sound
kernels, large damaged kernels, tail damaged kernels, and middle damaged
kernels. Kernels were classified as large damaged kernels when the length of a
pecky area covered more than half of the kernel. Tail damaged kernels were
defined as those kernels where a peck was located on the tail and the area of
the peck was less than half of the kernel. Middle damaged kernels were those
where the damaged area was located on the middle portion of the kernel and
the area of the peck was less than half of the kernel.

Kernel Color Measurement

The reflectance spectra at 4807750 nm were transferred into L�a�b�

color space and the software package Grams=32 (Galactic Industries, Salem,
NH) was used for kernel color determination. In the L�a�b� color space, L�

varies from 0 (black) to 100 (perfect white); a* ranges from �100 to 100 and
measures green when negative and red when positive; and b* varies from
�100 to 100, is a measure of blue when negative and yellow when positive.

Spectra Collection

Spectra from pecky and sound single kernels were collected using a
diode-array NIR spectrometer (DA7000, Perten Instruments, Springfield, IL).
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This spectrometer measures visible (4007750 nm) and NIR (75071700 nm)
reflectance at a rate of 30 spectra per second. Rice kernels were individually
placed in a black V-shaped trough (12mm long, 10mm wide, and 5mm deep)
and illuminated with a quartz tungsten halogen light via a fiber bundle (8mm
diameter) positioned 13mm from the top of the trough and oriented 45� from
vertical. The reflectance probe (2-mm diameter) was oriented vertically
9.5mm from the top of the trough. The reflectance probe carried the
reflectance energy to a spectrometer. A total of 1200 brown rice kernels were
measured. For each kernel, 8 spectra were collected and averaged. The
wavelength regions 5007750, 75071700, and 50071700 nm were used to
differentiate pecky and sound rice kernels. A spectrum of the empty trough,
used as a baseline, was measured at the beginning of the test and again after
every 100 kernels.

Statistical Analysis and Model Development

Spectra were analyzed using partial least squares (PLS) regression from
the software package Grams=32. All spectra were mean centered before
analysis. Mean centering removes the most common variation from the data
set and scales the data set so that the mathematics of the spectral decom-
position and correlation perform better. This involves calculating the average
of all the spectra in the training set and then subtracting the result from each
spectrum. PLS is a multivariate data analysis technique designed to handle
intercorrelated regressors. Two-class models were developed to classify pecky
and sound rice kernels. The kernels were separated equally into calibration
and validation sets based on even and odd numbers. Pecky rice kernels and
sound kernels were assigned dummy values of 1 and 2, respectively. A kernel
was considered to be categorized correctly if the predicted value lay on the
same side of the midpoint of the assigned values. Model performance is
reported as the multiple coefficient of determination (r2), standard error of
cross validation (SECV) of each calibration, and standard error of prediction
(SEP) of each validation sample set. The number of PLS factors reported
were the minimum required to give the high percentage of correct classifi-
cation.

The SAS DISCRIM procedure[18] was used to develop linear dis-
criminant functions based on two wavelengths (log 1=R values) for classifying
pecky rice and sound rice. The two-wavelength models were identified using
stepwise and forward regression (STEPWISE and MAXR methods) of the
entire wavelengths and regression of the best subsets of log (1=R) data by the
RSQUARE method. The STEPWISE and MAXR methods use forward
selection to select a subset of the wavelengths or a best-two wavelength model
for classifying each spectrum into one of the classes. The wavelengths were
chosen to enter or leave the model according to the significance level of an
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F-test. The MAXR method performs all possible subset regressions and rank
models according to r2 for each number of variables. In consideration of
bandwidths of filters that may be 40750 nm, only wavelength pairs that are at
least 100 nm away were considered for the discriminant analysis.

RESULTS AND DISCUSSION

Classification of Pecky Rice and Sound Rice by PLS

The classification results for calibration sample sets and prediction of
validation sample sets are summarized in Table 1. The NIR wavelength
region of 75071700 nm gave the highest percentage (100%) of correct clas-
sification for both calibration and prediction. The visible wavelength region
of 5007750 nm and NIR region (50071700 nm) gave similar percentages of
correct classification. Peck orientation and location had a slight effect on the
classification. The greatest percentage of correct classifications (100%)
was obtained when a peck area faced the illumination light. The most
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Table 1. Summary of Calibration and Validation Results Using PLS Models for Classifying
Pecky and Sound Rice Kernelsa

Spectra Region=
Sample Sets

Calibration (%) Validation Results (%)

Fb
Sound
Rice

Pecky
Rice Average

Sound
Rice

Pecky
Rice Average

5007750 nm
Peck face upc 6 100 100 100 100 100 100

Peck face downd 6 100 99.0 99.5 100 98.0 99.0
Bothe 6 100 99.3 99.7 100 99.3 99.7

50071700 nm

Peck face up 8 100 100 100 100 100 100
Peck face down 8 100 99.7 99.8 100 99.3 99.7
Both 8 100 99.7 99.8 100 99.3 99.7

75071700 nm
Peck face up 8 100 100 100 100 100 100
Peck face down 8 100 100 100 100 100 100

Both 8 100 100 100 100 100 100

aFor both calibration and validation sample sets, sound rice kernels¼ 300; pecky rice

kernels¼ 300 including 100 kernels with large peck area, 100 kernels with peck on center of the
kernel, and 100 kernels with peck on tail of the kernel.
bF¼ number of PLS factors.
cPeck up ¼ a peck area faces the illumination light.
dPeck down ¼ an undamaged area faces the illumination light.
eBoth¼ 50% of peck up þ50% of peck down.
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misclassified kernels were those with the discoloration or peck on the center
of the kernel. Results showed that classifying pecky rice and sound rice
kernels is possible even when the undamaged area faces the illumination light
because stink-bug feeding also causes microorganism activity, resulting in
grain discoloration. For PLS models, the number of PLS factors increased
as the wavelength region increased. For practical application, the model with
fewer PLS factors and using the visible region will allow for differentiation of
pecky and sound rice kernels.

Figure 1 shows the average spectra of pecky and sound rice kernels. In
general, the energy absorption of pecky rice kernels was higher in the visible
region and lower in the NIR region than that of sound rice kernels. The
differences in energy absorption between pecky rice and sound rice kernels
indicate differences in color and chemical composition. The greater energy
absorption of pecky rice kernels indicates that the color of pecky rice kernels
was darker than sound kernels. This is expected because pecky rice kernels
are usually accompanied with discoloration. The color differences between
pecky and sound rice kernels were proven by L, a, and b values in L*a*b
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Figure 1. Absorption curves for pecky and sound rice kernels. Vertical bar represents
standard deviation.
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color space (Table 2). The a and b values of the sound rice kernels were
significant lower than pecky rice kernels. This indicates that pecky rice ker-
nels are darker and more yellow than sound rice kernels.

The energy absorption of pecky rice kernels was less than that of
sound kernels over the entire NIR wavelength region (Fig. 1). This
probably was due to the differences in chemical composition and light
scattering between pecky and sound rice kernels. The peaks and valleys of
the Beta coefficients curve from PLS model show the significant differences
in energy absorption between the pecky and sound rice kernels (Fig. 2).
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Table 2. The Color Variations Between Pecky and Sound Rice Kernels Measured as L, a,
and b Values in the L*a*b Color Space

Class

L a b

Avg. SD Avg. SD Avg. SD

Sound rice 40.76 2.66 3.85 0.36 4.75 0.39
Pecky rice 39.24 5.36 6.27 1.69 7.42 1.76

Figure 2. Beta coefficient curve of PLS model (6 PLS factors) for classification of pecky and
sound rice kernels.
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The peaks between 500 to 600 nm and around 770 nm are related to color
difference. The peaks around 1270, 1515, and 1400 nm are related to fiber
and starch content.[19,20] The pecky rice may have less starch content than
sound rice kernels because pecky rice kernels have less weight and more
fiber at the damaged area. The peak around 1570 nm represents protein
content.[19] Some peaks and valleys in the Beta coefficient curve may
represent interactions of moisture, starch, protein, oil, and cellulose caused
by peck damage in the rice kernels.

Classification of Pecky Rice and Sound Rice by Two-wavelength Model

Stepwise and best-subsets regression identified the wavelengths 480
and 875 nm as promising in the visible and NIR regions, respectively, for
pairing with some other wavelengths in the 48071700 nm range. Figure 3
shows that the r2 of the classification models with wavelengths 480 or
875 nm decreasing as wavelengths increased. This may indicate that more
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Figure 3. Coefficient of determination ðr2Þ as a function of single and two wavelengths for

single and two-wavelength models.
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spectral information for classification lay on the visible region than on the
NIR region. The classification accuracies for selected wavelength pairs are
shown in Table 3. The classification accuracies for the 480 nm and 590 nm
model were comparable to the full-wavelength PLS model in Table 1. The
average classification accuracy was 99.3% for both calibration and vali-
dation sample sets. The model that used a visible (480 nm) and an NIR
(1095 nm) wavelength yielded lower classification accuracies (97% and
94.3% for calibration and validation sample sets, respectively) than the
model using two visible wavelengths. The model that used both NIR
wavelengths (875 and 985 nm) yielded the lowest classification accuracies
(92% and 90.2% for calibration and validation sample sets, respectively).
The results are further indications that visible wavelengths are more
important for classifying pecky rice from sound rice than NIR wave-
lengths.

In sorting of snap beans, the greatest difference in light reflectance
between white and off-colored (brown, tan, green; poor quality) seeds was
observed in the 2757450 nm range; little differences were observed in the NIR
region.[21] The reflectance ratio of 440 and 490 nm has been used successfully
by Tyson and Clark for detecting aflatoxin contamination in pecans
(r2¼ 0.86).[22] However, it appears that there are some physical properties
and chemical constitutions contributing to the classifying pecky rive in the
NIR region. The r2 curve from single-wavelength model showed that r2

increased as wavelengths increased in the NIR region (Fig. 3). This indicates
some chemical information beyond the color differences. The peak around
985 nm is close to the second overtone of OH.[23] The peaks around 1210 nm
and 1515 nm are related to fiber and starch content.[19,20] The peaks of r2

values of the single-wavelength model had the same pattern as the Beta
coefficient of the PLS model.
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Table 3. Summary of Calibration and Validation Results using the Linear Discriminant
Functions for Classifying Pecky Rice and Sound Rice Kernelsa

Wavelength
(nm)

Calibration Accuracy (%) Validation Accuracy (%)

Sound
Rice

Pecky
Rice Average

Sound
Rice

Pecky
Rice Average

480 and 590 100 98.7 99.3 99.7 99.0 99.3
480 and 1095 100 94.0 97.0 98.7 90.0 94.3

875 and 985 99.7 84.3 92.0 99.7 80.6 90.2

aFor two-wavelength models, 600 kernels were used for calibration and validation sample sets,
respectively. The pecky-rice kernels contain 50% of kernels with peck up and 50% of kernels
with peck down.
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CONCLUSIONS

PLS full wavelength models and two-wavelength models were developed
to classify pecky rice and sound rice kernels. For PLS models, the NIR
wavelength region of 75071700 nm gave the greatest percentage of correct
classification for both calibration and prediction (100%). The greatest correct
classifications (100%) were obtained when a peck area faced the illumination
light for wavelength regions of 5007750, 75071700, and 50071700 nm.
Considering that stink-bug feeding also caused microorganism activity,
resulting in discoloration on the grain, this made the classification of pecky
and sound rice kernels (accuracy> 99%) possible even when the undamaged
area faces the illumination light. For two-wavelength models, the model with
wavelengths of 480 nm and 590 nm yielded the highest classification accura-
cies for both calibration accuracies for both calibration (99.3%) and vali-
dation (99.3%) sample sets.
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